2017年9月19日 星期二

nRF51: button long-press & short-multi press implement without BSP

In some case, it is ineviatable to use ONE button as multi-type signal source.Thus, in this post, I demonstate how to discern the state of button-pressed via nRF51 SDK. This article is an implementation of the function to support button long-pressed and multi-pressed as specified signal without BSP supplying.

the following article is a simple implement of:

1. long press with customized interval
2. short- multi press
3. the hurried pressings might lead system crash, it needs protection, so I ingore any-button signal in the next 4 seconds

BUTTON 1 implemented to measure the pressing time (in 0.1 sec)
BUTTON 2 implemented for  receiving double press


SDK 11/ nRF51822

*about how to start your UART, please read this article


STEP 1 . add ..\..\..\..\..\..\components\libraries\gpiote












add these two files to your project

























STEP 2. add button definition
add the code about line 58.

#include "app_button.h"
#include "app_gpiote.h"
#define BUTTON_DEBOUNCE_DELAY   10 
#define APP_GPIOTE_MAX_USERS             1  . 



STEP 3. buttons initialization
change func buttons_leds_init( ) like this

static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_NONE,
                                 APP_TIMER_TICKS(30, APP_TIMER_PRESCALER), 
                                 bsp_event_handler);
    APP_ERROR_CHECK(err_code);
    
 
    static app_button_cfg_t p_button[] = {{BUTTON_1, APP_BUTTON_ACTIVE_LOW, NRF_GPIO_PIN_PULLUP, button_handler},
                                          {BUTTON_2, APP_BUTTON_ACTIVE_LOW, NRF_GPIO_PIN_PULLUP, button_handler},};

                                        
    APP_GPIOTE_INIT(APP_GPIOTE_MAX_USERS);
                      
  // Initializing the buttons.
    err_code = app_button_init(p_button, sizeof(p_button) / sizeof(p_button[0]), BUTTON_DEBOUNCE_DELAY);
    APP_ERROR_CHECK(err_code);
                      
    err_code = app_button_enable();
    APP_ERROR_CHECK(err_code);     

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);
                      
    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}

add button_handler( ) above buttons_leds_init ( )

static void button_handler(uint8_t pin_no, uint8_t button_action)
{ 
 uint32_t err_code;
 
 if (false != is_able_to_receiving_button_pressed_signal)
 {
  if(button_action == APP_BUTTON_PUSH)
  {
   switch(pin_no)
   {
    case BUTTON_1:
     PRINTF_MSG("press button 1 \r\n");
                 
     err_code = app_timer_start(measure_pressed_time_timer_id,PRESS_MEASURE_INTERVAL, NULL);
     APP_ERROR_CHECK(err_code);
     break;
         
    case BUTTON_2:   
    if (0 == button2_press_count)
    {   
     err_code = app_timer_start(double_press_id,DOUBLE_PRESS_READ_INTERVAL, NULL);
     APP_ERROR_CHECK(err_code);
    }
     
     break;          
      
    default:
     break;
   }
  }
  else if (button_action == APP_BUTTON_RELEASE)
  {
   switch(pin_no)
   {
    case BUTTON_1:                 
    PRINTF_MSG("button 1 release\r\n"); 
    uint32_t err_code;
    err_code = app_timer_stop(measure_pressed_time_timer_id);
    APP_ERROR_CHECK(err_code);
   
    printf("**button1_measured_count= %f totally**\r\n",button1_measured_count*0.1); 
    button1_measured_count= 0;
   
    is_able_to_receiving_button_pressed_signal= false;
    
    app_timer_start(button_restrict_id,BUTTON_RESTRICT_INTERVAL, NULL);
    break;
       
    case BUTTON_2:
    //PRINTF_MSG("button 2 release\r\n");
    
    button2_press_count= button2_press_count+1;
     
   if (DOUBLE_PRESS == button2_press_count)
   {
    is_able_to_receiving_button_pressed_signal = false;
    printf("detect double press !!\r\n");
     
    app_timer_start(button_restrict_id,BUTTON_RESTRICT_INTERVAL, NULL);
         
   } 
                    
    break;
       
    case BUTTON_3:
    break;
    
   default:
    break;
   }
  }
 }
 
}

STEP 4.  create timers

add the code about line.120

static uint16_t button1_measured_count= 0;
APP_TIMER_DEF(measure_pressed_time_timer_id); 
#define PRESS_MEASURE_INTERVAL               APP_TIMER_TICKS(100, APP_TIMER_PRESCALER)

static uint8_t button2_press_count;
APP_TIMER_DEF(double_press_id);
#define DOUBLE_PRESS_READ_INTERVAL        APP_TIMER_TICKS(1500, APP_TIMER_PRESCALER)
#define DOUBLE_PRESS                     (0x02)

static bool is_able_to_receiving_button_pressed_signal= true;

APP_TIMER_DEF(button_restrict_id);
#define BUTTON_RESTRICT_INTERVAL          APP_TIMER_TICKS(4000, APP_TIMER_PRESCALER)


add the code in timer_init ( )

uint32_t err_code;
  
err_code = app_timer_create(&measure_pressed_time_timer_id,
                               APP_TIMER_MODE_REPEATED,
                                button1_triggered_event_handler);
                   
APP_ERROR_CHECK(err_code);
  
  
err_code = app_timer_create(&double_press_id,
                               APP_TIMER_MODE_SINGLE_SHOT,
                              button2_triggered_event_handler);
                   
APP_ERROR_CHECK(err_code);
    
err_code = app_timer_create(&button_restrict_id,
                               APP_TIMER_MODE_SINGLE_SHOT,
                               button_restrict_handler);
                   
APP_ERROR_CHECK(err_code);

about the variable"is_able_to_receiving_button_pressed_signal ":

once the variable is_able_to_receiving_button_pressed_signal becomes false, the button pressed would be ignore, it will prevent system from crash of busy interruption.


add the code above timer_init ( )

static void  button1_triggered_event_handler(void * p_context)
{
 UNUSED_PARAMETER(p_context);

 button1_measured_count++;
 printf("recent counter = %f\r\n",button1_measured_count*0.1);
}


static void button2_triggered_event_handler(void * p_context)
{
 UNUSED_PARAMETER(p_context);
 uint32_t err_code;
 

 printf("button2_press_count= %d\r\n",button2_press_count); 
 button2_press_count= 0; 
}

 
static void button_restrict_handler(void * p_context)
{
 UNUSED_PARAMETER(p_context);
 
 is_able_to_receiving_button_pressed_signal = true;
 
 printf("can received button\r\n");
}

program and upload to your device.


STEP 5.Test

I long press button 1 for 10 sec then rapidly press button 2
the device can count how long I press button 1 and only receive 2 press of button 2

like this:




































Reference:
https://github.com/NordicSemiconductor/nrf51-app-button-example/blob/master/main.c




2017年9月18日 星期一

nRF51: A precise description of DFU_OTA

In this article will have 2 parts.
part 1 will describe how to make a DFU zip  file
part 2 will describe how to resolve "DFUtarg" after program bootloader.
(which means you don't need to press S4 button)

PART 1.

STEP 1. hex file in ./build folder.

this is  BLE advertisng name of my device
you can see it in mobile app

and I try to OTA the device and change its advertisng name.


























__________________________________________________________________________



I program again and change  DEVICE_NAME  to "nrf_agatha"
like this




find the .hex in
C:\..\pca10028\s130\arm5_no_packs\_build





















STEP 2. install necessary application on PC
please install below applicaiton on your PC

nrf command line tool
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822

master control panel (MCP)
https://www.nordicsemi.com/eng/nordic/Products/nRF51-DK/nRF-MCP-x64/38907


STEP 3.command for making a zip file

copy this .hex file to
C:\Program Files (x86)\Nordic Semiconductor\Master Control Panel\3.10.0.14\nrf

open cmd.exe
and type the below command

cd C:\Program Files (x86)\Nordic Semiconductor\Master Control Panel\3.10.0.14\nrf
nrfutil.exe dfu genpkg --application nrf51422_xxac_s130.hex --application-version 0xffff --dev-revision 0xffff --dev-type 0xffff --sd-req 0xfffe nrf_agatha.zip

the result








and put nrf_agatha.zip to your mobile .


STEP 4.OTA upload test

start app nRF_Toolbox and press DFU























select .zip file























select device























start upload























disconnect























and you will the name change












PART 2. how to avoid "DFUtarg"
after programing

Softdevice  >
C:\..\nRF5x_SDK_11.0.0\components\softdevice\s130\hex

application >
(as your folder)

bootloader  >
C:\...\nRF5x_SDK_11.0.0\examples\dfu\bootloader\pca10028\dual_bank_ble_s130\arm5_no_packs\_build


go to
C:\Program Files (x86)\Nordic Semiconductor\nrf5x\bin

open cmd and type this command
cd C:\Program Files (x86)\Nordic Semiconductor\nrf5x\bin
nrfjprog.exe --family nrf51 --memwr 0x3fc00 --val 1

and type this
nrfjprog.exe --family nrf51 --reset



Note :
the above info had already write in my previous blogger, and this article just only for step-by-step




















2017年8月30日 星期三

nRF5x: change advertising data manually without re-start

unlike other BLE MCU, nRF5X is able to change advertising data without restart .
the example shows how to easily change BLE peripheral advertising data, so the central can watch status of peripheral without connect it.


*
about how to start UART printf
please read this article:
http://gaiger-programming.blogspot.tw/2016/12/nrf51-make-printf-works-well.html


STEP 1. make advertising non-stop
open "ble_app_template" form:
\nRF5x_SDK_11.0.0\examples\ble_peripheral\ble_app_template

change ble device name at about line 63

#define DEVICE_NAME                      "advertising test"  

change APP_ADV_TIMEOUT_IN_SECONDS  at about line 65

#define APP_ADV_TIMEOUT_IN_SECONDS       0                                        

and in advertising_init( ) function
change advdata.flags

    uint32_t      err_code;
    ble_advdata_t advdata;
    
    memset(&advdata, 0, sizeof(advdata));

    advdata.name_type               = BLE_ADVDATA_FULL_NAME;
    advdata.include_appearance      = true;
    advdata.flags                   = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
    advdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    advdata.uuids_complete.p_uuids  = m_adv_uuids;

    ble_adv_modes_config_t options = {0};
    options.ble_adv_fast_enabled  = BLE_ADV_FAST_ENABLED;
    options.ble_adv_fast_interval = APP_ADV_INTERVAL;
    options.ble_adv_fast_timeout  = APP_ADV_TIMEOUT_IN_SECONDS;
    err_code = ble_advertising_init(&advdata, NULL, &options, on_adv_evt, NULL);
  
	
    APP_ERROR_CHECK(err_code);                                       

re-build all and load to your board , you can see its advertising never-stop,
and the adverting raw data will be like:



"6164766572746973696e672074657374" in hex are "advertising test" in string.


STEP 2. add a repeated timer to change advertising data manually

add this definition at about line 95

APP_TIMER_DEF(m_adv_name_change_timer_id);
#define ADV_NAME_CHANGE_INTERVAL            APP_TIMER_TICKS(1*1000, APP_TIMER_PRESCALER)
I set the timer repeated in 1 second interval.

and create timer in timers_init( )


uint32_t err_code;
err_code = app_timer_create(&m_adv_name_change_timer_id,
                            APP_TIMER_MODE_REPEATED,
                            adv_name_change_timeout_handler);

APP_ERROR_CHECK(err_code);

add  adv_name_change_timeout_handler( )

#define DEVICE_NAME_1 "0987654321"
#define DEVICE_NAME_2 "1234567890"
static uint8_t index = 0;
static void adv_name_change_timeout_handler(void * p_context)
{
	UNUSED_PARAMETER(p_context);	
	uint32_t err_code;
	
	printf("change adv name\r\n");	

	ble_gap_conn_sec_mode_t sec_mode;
	BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
	
	
	if (0==index)
	{
		err_code = sd_ble_gap_device_name_set(&sec_mode,
                 (const uint8_t *)DEVICE_NAME_1,strlen(DEVICE_NAME_1));

		APP_ERROR_CHECK(err_code);
		index = 1;																		
	}
	else if (1==index)
	{
		err_code = sd_ble_gap_device_name_set(&sec_mode,
                 (const uint8_t *)DEVICE_NAME_2,	strlen(DEVICE_NAME_2));

		APP_ERROR_CHECK(err_code);
		index = 0;								
	}
	
	
	ble_advdata_t advdata;
	memset(&advdata, 0, sizeof(advdata));

	advdata.name_type               = BLE_ADVDATA_FULL_NAME;
	advdata.include_appearance      = true;
	advdata.flags                   = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
	advdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
	advdata.uuids_complete.p_uuids  = m_adv_uuids;
																				
	err_code = ble_advdata_set(&advdata,NULL);																			
	APP_ERROR_CHECK(err_code);
	
}


start the timer at application_timers_start( )

uint32_t err_code;
	
err_code = app_timer_start(m_adv_name_change_timer_id, ADV_NAME_CHANGE_INTERVAL, NULL);	
APP_ERROR_CHECK(err_code);

press rebuild-all and load to your board



STEP 3: check advertising data of your device
the adverting raw data will change from



to


in 1 sec interval.


note:
1. in nrf_connect app you can see more detail about the advertising raw data fields:



2. the max length of device name is 29 byte, which can have many usage.
reference : https://devzone.nordicsemi.com/question/121842/max-length-of-the-device-name-in-nrf52832/































2017年8月29日 星期二

nRF51: how to simply port nRF51822 code to nRF51802

For some reasons you might need nRF51802 instead of nRF51822: hardware I2C, more PWM channel ...This article shows how to simply port the code developed on nRF51822 to  nRF51802.

nRF51802 MUST use SDK11 or LATER.

STEP 1. open "pca10028.h"

about line.150 , there are code like this:

#define NRF_CLOCK_LFCLKSRC      {.source        = NRF_CLOCK_LF_SRC_XTAL,            \
                                 .rc_ctiv       = 0,                                \
                                 .rc_temp_ctiv  = 0,                                \
                                 .xtal_accuracy = NRF_CLOCK_LF_XTAL_ACCURACY_20_PPM}

change like this :

/*power by AgathaKuan*/
#ifndef NRF51802
#define NRF_CLOCK_LFCLKSRC      {.source        = NRF_CLOCK_LF_SRC_XTAL,            \
                                 .rc_ctiv       = 0,                                \
                                 .rc_temp_ctiv  = 0,                                \
                                 .xtal_accuracy = NRF_CLOCK_LF_XTAL_ACCURACY_20_PPM}
#else
#define NRF_CLOCK_LFCLKSRC      {.source        = NRF_CLOCK_LF_SRC_SYNTH,            \
                                 .rc_ctiv       = 0,                                \
                                 .rc_temp_ctiv  = 0,                                \
                                 .xtal_accuracy = NRF_CLOCK_LF_XTAL_ACCURACY_20_PPM}
#endif

STEP 2. check your UART pins
at about line 65

#define RX_PIN_NUMBER  11
#define TX_PIN_NUMBER  9

but nRF51802 DEFAULT UART pins are P0_1 &P0_4
(as nRF51822  TWI pins)

so, change as

#ifndef NRF51802
#define RX_PIN_NUMBER  11
#define TX_PIN_NUMBER  9
#else

#define RX_PIN_NUMBER  1
#define TX_PIN_NUMBER  4
#endif

(The UART pin should be refered to your circuit diagram, please check it or ask your circuit engineer)


STEP 3. add nrf51802 definition
add this at about line 60 in "pca10028"

#define NRF51802


STEP 4. press to "re-built all"

press the button to re-build all , than load it into nRF51802











Addition:
1. if you also need to use TWI pins, open "twi_master_config.h" and change the following definition
as your specified pins.
#ifndef TWI_MASTER_CONFIG
#define TWI_MASTER_CONFIG

/*agatha: change the following definition to pin numbers you want*/
#define TWI_MASTER_CONFIG_CLOCK_PIN_NUMBER (YOUR_SCL_PIN)
#define TWI_MASTER_CONFIG_DATA_PIN_NUMBER (YOUR_SDA_PIN) 


#endif







2017年8月20日 星期日

nRF5x : how to control 4 channel pwm in real-time with BLE

This article is to help someone who wants to manipulate 4 channels PWM without lossing BLE.


The PWM example in nRF5x  SDK
(located in nRF5x_SDK_11.0.0\examples\peripheral\pwm_library)
has 2 insufficiency that if you follow SDK example totally:
1.the nRF51 is only able to control two channel PWM  with BLE, or the BLE and PWM would be disorderd.
2.the example is not enable to  start  BLE at the same time

Board : nRF51822 / pca10028

the following example is how to control 4 channel PWM with UART and enable BLE

STEP 0.  initial UART

Please follow this article:
http://gaiger-programming.blogspot.tw/2016/12/nrf51-make-printf-works-well.html?m=0


STEP 1. initial PWM
add this in Keil project setting



























and include these files


add this in main.c

#include "app_pwm.h"

and change your BLE device name

#define DEVICE_NAME                      "PWM Peripheral"


STEP 3. enable PWM timers

one timer can only use 2 channel PWM as the SDK's restriction , besides,  TIMER0 has been used by Softdevice to maintain scheduler.

so you have to enable TIMER1 and TIMER2
if  I use TIMER0, the Softdevice would not work normally.

if the PWM channel number is over 2,  the BLE and PWM would be disorderd

in "nrf_drv_config.h"

you will see about line 60

#define TIMER1_ENABLED 0

and about line 70

#define TIMER2_ENABLED 0

change as

//for pwm
//#define TIMER1_ENABLED 0 
#define TIMER1_ENABLED 1

//#define TIMER2_ENABLED 0
#define TIMER2_ENABLED 1


STEP 4. add PWM initial functions in main.c

about line 100

APP_PWM_INSTANCE(PWM1,1); 
APP_PWM_INSTANCE(PWM2,2);

APP_TIMER_DEF(m_pwm1_timer_id);
#define PWM1_TIMEOUT_INTERVAL     APP_TIMER_TICKS(50, APP_TIMER_PRESCALER)

APP_TIMER_DEF(m_pwm2_timer_id);
#define PWM2_TIMEOUT_INTERVAL     APP_TIMER_TICKS(50, APP_TIMER_PRESCALER)


static uint8_t led_1_value = 0;
static uint8_t led_2_value = 0;
static uint8_t led_3_value = 0;
static uint8_t led_4_value = 0;


static volatile bool ready_flag; 


void pwm_ready_callback(uint32_t pwm_id)    
{
    ready_flag = true;
}


in main function

app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_2CH(2000L, LED_1, LED_2);
pwm1_cfg.pin_polarity[1] = APP_PWM_POLARITY_ACTIVE_LOW;
err_code = app_pwm_init(&PWM1,&pwm1_cfg,pwm_ready_callback);
APP_ERROR_CHECK(err_code);
app_pwm_enable(&PWM1);
  
app_pwm_config_t pwm2_cfg =  APP_PWM_DEFAULT_CONFIG_2CH(2000L, LED_3, LED_4);                  
pwm2_cfg.pin_polarity[0] = APP_PWM_POLARITY_ACTIVE_LOW;
err_code = app_pwm_init(&PWM2,&pwm2_cfg,pwm_ready_callback);
APP_ERROR_CHECK(err_code);
app_pwm_enable(&PWM2);



STEP 5. add app_timer for pwm



static void pwm1_timeout_handler(void * p_context)
{ 
    UNUSED_PARAMETER(p_context);

    ready_flag = false;
 
    while (app_pwm_channel_duty_set(&PWM1, 0, led_1_value) == NRF_ERROR_BUSY);  
    while (app_pwm_channel_duty_set(&PWM1, 1, led_2_value) == NRF_ERROR_BUSY); 
 
}


static void pwm2_timeout_handler(void * p_context)
{ 
    UNUSED_PARAMETER(p_context);

    ready_flag = false;
 
    while (app_pwm_channel_duty_set(&PWM2, 0, led_3_value) == NRF_ERROR_BUSY);  
    while (app_pwm_channel_duty_set(&PWM2, 1, led_4_value) == NRF_ERROR_BUSY); 
 
}

static void timers_init(void)
{
    // Initialize timer module.
    APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER_OP_QUEUE_SIZE, false);

    /*agatha : add from here*/
    uint32_t err_code;
    err_code = app_timer_create(&m_pwm1_timer_id, 
                                APP_TIMER_MODE_SINGLE_SHOT, 
                                pwm1_timeout_handler);
    APP_ERROR_CHECK(err_code);
 
    err_code = app_timer_create(&m_pwm2_timer_id, 
                                APP_TIMER_MODE_SINGLE_SHOT, 
                                pwm2_timeout_handler);
    APP_ERROR_CHECK(err_code);
  
}


STEP 6. add command analyzed function in uart_event_handle

here is my command format (in hex)

0x40 0x01 value1 0x02 value2 0x03 value3 0x04 value4 0x23

for example,if I send :

40 01 ff 02 ff 03 ff 04 ff 23

than 4 channel PWM will be 100% (the max value of PWM)


add above uart_event_handle

static uint8_t  data_array[255];
static uint8_t  index;

and this is my uart_event_handle

void uart_event_handle(app_uart_evt_t * p_event)
{
    uint32_t        err_code; 
 
  
    switch (p_event->evt_type)
  {
   case APP_UART_DATA_READY:
    UNUSED_VARIABLE(app_uart_get(&data_array[index]));
    index++; 
   
    printf("uart event\r\n");
    if (((0x40 == data_array[0] && 0x23 == data_array[index-1]))
    { 
     
     for (uint8_t i = 0;i < index;i++)        
         app_uart_put(data_array[i]);
    
     led_1_value = data_array[2]*0x64/0xff;
     led_2_value = data_array[4]*0x64/0xff;
     
     err_code = app_timer_start(m_pwm1_timer_id,PWM1_TIMEOUT_INTERVAL,NULL);
     APP_ERROR_CHECK(err_code);
     
     led_3_value = data_array[6]*0x64/0xff;
     led_4_value = data_array[8]*0x64/0xff;
     
     err_code = app_timer_start(m_pwm2_timer_id,PWM2_TIMEOUT_INTERVAL,NULL);
     APP_ERROR_CHECK(err_code);
   
     memset(&data_array,0,sizeof(data_array));       
     index = 0;
    } 
    
    
    break;
   
   case APP_UART_COMMUNICATION_ERROR:
    APP_ERROR_HANDLER(p_event->data.error_communication);
    break;

   case APP_UART_FIFO_ERROR:
     APP_ERROR_HANDLER(p_event->data.error_code);
     break;

   default:
     break;
   
  } 
 
} 


STEP 7. test device BLE advertisement by your smart phone




STEP 8. Test PWM function

open your serial tool ( I use sscom)

first command I send in hex



and the second command



and you can see the different PWM of your LEDs


reference:

https://github.com/electronut/nRF51-RGB-LED-test































2017年6月16日 星期五

CC2540 software implement I2C (mpu6050 for example)

We all know that cc2540 doesn't have hardware I2C pin. In this article, I  :

1.use to GPIO pins to simulate I2C SDA and SCL.

2.read the electrics potential as I2C data.

3.print out the data by UART

*For how to use UART in CC254x,
please look for it on previous article here:
http://blog.csdn.net/feilusia/article/details/47431659

STEP 0. set MPU6050 on CC2541
I define
SCL = P1.5
SDA= P1.6



STEP 1 .
I made a project file "SimpleBLEPeripheral_uart_mpu6050_file".

add these files in :
..\BLE-CC254x-1.3.2\Projects\ble\SimpleBLEPeripheral_uart_mpu6050_file\Source
and add in IAR.

1. sw_iic.c
2. sw_iic.h
3. mpu6050.c
4. mpu6050.h





































and here is the source code:

sw_iic.h
#ifndef _SW_IIC_H_
#define _SW_IIC_H_

/*power by Agatha Kuan 
2017.06.09*/

#define uchar unsigned char   
#define uint unsigned int     


#define SCL P1_5
#define SDA P1_6

#define HIGH                (1)
#define LOW                 (0)


extern void SDA_OUT(void);
extern void SDA_OUT(void);
extern void SDA_IN(void);
extern void SDA_HIGH(void);
extern void SDA_LOW(void);
extern void SCL_HIGH(void);
extern void SCL_LOW(void);

extern uint SDA_READ(void);

extern void IIC_DELAY(void);
extern void delay_1ms(void);

extern void IIC_Init(void);
extern void Signal_Start(void);
extern void Signal_Stop(void);
extern void Write_Byte(uchar wdata);
extern uchar Read_Byte();
extern void Write_Add(uchar add,uchar wdata,uchar comd);
extern uchar Read_Add(uchar add,uchar comd);

#endif


sw_iic.c
/*power by Agatha Kuan 
2017.06.09*/

#include "IIC.h"
#include "sw_iic.h"
#include <iocc2540.h>

#define  uchar unsigned  char 
#define  uint  unsigned  int


void SDA_OUT(void)
{
 P1SEL &= ~(1 << 6);
 P1DIR |= (1 << 6);
}


void SCL_OUT(void)
{
 P1SEL &= ~(1 << 5);
 P1DIR |= (1 << 5);
}


void SDA_IN(void)
{
 P1SEL &= ~(1 << 6);
 P1DIR &=~(1 << 1);
}


void SDA_HIGH(void)
{
 SDA = HIGH;
}


void SDA_LOW(void)
{
 SDA = LOW;
}


void SCL_HIGH(void)
{
 SCL = HIGH;
}


void SCL_LOW(void)
{
 SCL = LOW;
}


uint SDA_READ(void)
{
  uint i = 0;
  i = SDA;
  
  if (LOW == SDA)
    i = 0;
  else if (HIGH == SDA)
    i = 1;
  else
    return 0xFF;
  
  return i;
      
}


void delay_1ms(void)    
{
    uchar a,b,c;    
    for(c=4;c>0;c--)
    {
        //for(b=142;b>0;b--)
        {
            for(a=2;a>0;a--)
            {
            }
        }
    }
}


void IIC_DELAY(void)
{
 delay_1ms();
}


void IIC_Init(void)
{
    SDA_OUT();
    SCL_OUT();
    
    SDA_HIGH();
    IIC_DELAY;
    SCL_HIGH();
    IIC_DELAY();
}


void Signal_Start(void)
{
   SDA_OUT();      
    SDA_HIGH();   
    SCL_HIGH();
    IIC_DELAY();
    SDA_LOW();
    IIC_DELAY();  
    SCL_LOW();
}
void Signal_Stop(void)
{
    SDA_OUT(); 
    
    SDA_LOW();
    IIC_DELAY();
    SCL_HIGH();
    IIC_DELAY();
    SDA_HIGH();
    IIC_DELAY(); 
}


void Respons(void) /*wait_ack*/
{        
    SDA_IN();
    
    SCL_HIGH();
    IIC_DELAY();
    SCL_LOW();
    IIC_DELAY();
 
#if (0)  /*this part is to match ACK or nACK. I don't really know the implement*/
    uint i = 0;
    
    if(i>=300)
    {
      delay_1ms();
      i++;
    }
#endif   
    
}


void Write_Byte(uchar wdata)
{
    uchar i,mdata;

    SDA_OUT();
    SCL_OUT();
    
    mdata = wdata;
    for(i=0;i<8;i++)
    {        
        SCL_LOW();
        IIC_DELAY();
        
        if(mdata & 0x80)
        {
          SDA_HIGH();
        }
        else
        {
          SDA_LOW();
        }
        IIC_DELAY();
        SCL_HIGH();
        IIC_DELAY();  
        mdata <<= 1;
    }
    SCL_LOW();
    IIC_DELAY();
    SCL_HIGH();
    IIC_DELAY();
}


uchar Read_Byte()
{
    uchar i,rdata = 0;

    SDA_OUT();
    SCL_OUT();
    
    SCL_LOW();
    IIC_DELAY();
    SCL_HIGH();
        
    for(i=0;i<8;i++)
    {
        SCL_HIGH();
        IIC_DELAY();
        rdata = (rdata<<1)|SDA_READ();
        SCL_LOW();
        IIC_DELAY();
    }
    return rdata;
}


void Write_Add(uchar add,uchar wdata,uchar comd)
{
    Signal_Start(); 
    Write_Byte(comd);
    Respons();      
    Write_Byte(add);
    Respons();      
    Write_Byte(wdata);
    Respons();      
    Signal_Stop();  
}


uchar Read_Add(uchar add,uchar comd)/*read at specific addr in i2c*/
{
    uchar tdata;
    Signal_Start();     
    Write_Byte(comd);
    Respons();          
    Write_Byte(add);
    Respons();          
    Signal_Start();     
    Write_Byte(comd|0x01);
    Respons();          
    tdata = Read_Byte();
    Signal_Stop();      
    return tdata;       
}


mpu6050.h
#ifndef _MPU6050_H
#define _MPU6050_H

#define PORT_USED        0

#define MPU6050_ADDRESS_AD0_LOW     0x68 // address pin low (GND), default for InvenSense evaluation board
#define MPU6050_ADDRESS_AD0_HIGH    0x69 // address pin high (VCC)
#define MPU6050_DEFAULT_ADDRESS     (MPU6050_ADDRESS_AD0_LOW<<1)
#define MPU6050_RA_XG_OFFS_TC       0x00 //[7] PWR_MODE, [6:1] XG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_YG_OFFS_TC       0x01 //[7] PWR_MODE, [6:1] YG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_ZG_OFFS_TC       0x02 //[7] PWR_MODE, [6:1] ZG_OFFS_TC, [0] OTP_BNK_VLD
#define MPU6050_RA_X_FINE_GAIN      0x03 //[7:0] X_FINE_GAIN
#define MPU6050_RA_Y_FINE_GAIN      0x04 //[7:0] Y_FINE_GAIN
#define MPU6050_RA_Z_FINE_GAIN      0x05 //[7:0] Z_FINE_GAIN
#define MPU6050_RA_XA_OFFS_H        0x06 //[15:0] XA_OFFS
#define MPU6050_RA_XA_OFFS_L_TC     0x07
#define MPU6050_RA_YA_OFFS_H        0x08 //[15:0] YA_OFFS
#define MPU6050_RA_YA_OFFS_L_TC     0x09
#define MPU6050_RA_ZA_OFFS_H        0x0A //[15:0] ZA_OFFS
#define MPU6050_RA_ZA_OFFS_L_TC     0x0B
#define MPU6050_RA_XG_OFFS_USRH     0x13 //[15:0] XG_OFFS_USR
#define MPU6050_RA_XG_OFFS_USRL     0x14
#define MPU6050_RA_YG_OFFS_USRH     0x15 //[15:0] YG_OFFS_USR
#define MPU6050_RA_YG_OFFS_USRL     0x16
#define MPU6050_RA_ZG_OFFS_USRH     0x17 //[15:0] ZG_OFFS_USR
#define MPU6050_RA_ZG_OFFS_USRL     0x18
#define MPU6050_RA_SMPLRT_DIV       0x19
#define MPU6050_RA_CONFIG           0x1A
#define MPU6050_RA_GYRO_CONFIG      0x1B
#define MPU6050_RA_ACCEL_CONFIG     0x1C
#define MPU6050_RA_FF_THR           0x1D
#define MPU6050_RA_FF_DUR           0x1E
#define MPU6050_RA_MOT_THR          0x1F
#define MPU6050_RA_MOT_DUR          0x20
#define MPU6050_RA_ZRMOT_THR        0x21
#define MPU6050_RA_ZRMOT_DUR        0x22
#define MPU6050_RA_FIFO_EN          0x23
#define MPU6050_RA_I2C_MST_CTRL     0x24
#define MPU6050_RA_I2C_SLV0_ADDR    0x25
#define MPU6050_RA_I2C_SLV0_REG     0x26
#define MPU6050_RA_I2C_SLV0_CTRL    0x27
#define MPU6050_RA_I2C_SLV1_ADDR    0x28
#define MPU6050_RA_I2C_SLV1_REG     0x29
#define MPU6050_RA_I2C_SLV1_CTRL    0x2A
#define MPU6050_RA_I2C_SLV2_ADDR    0x2B
#define MPU6050_RA_I2C_SLV2_REG     0x2C
#define MPU6050_RA_I2C_SLV2_CTRL    0x2D
#define MPU6050_RA_I2C_SLV3_ADDR    0x2E
#define MPU6050_RA_I2C_SLV3_REG     0x2F
#define MPU6050_RA_I2C_SLV3_CTRL    0x30
#define MPU6050_RA_I2C_SLV4_ADDR    0x31
#define MPU6050_RA_I2C_SLV4_REG     0x32
#define MPU6050_RA_I2C_SLV4_DO      0x33
#define MPU6050_RA_I2C_SLV4_CTRL    0x34
#define MPU6050_RA_I2C_SLV4_DI      0x35
#define MPU6050_RA_I2C_MST_STATUS   0x36
#define MPU6050_RA_INT_PIN_CFG      0x37
#define MPU6050_RA_INT_ENABLE       0x38
#define MPU6050_RA_DMP_INT_STATUS   0x39
#define MPU6050_RA_INT_STATUS       0x3A
#define MPU6050_RA_ACCEL_XOUT_H     0x3B
#define MPU6050_RA_ACCEL_XOUT_L     0x3C
#define MPU6050_RA_ACCEL_YOUT_H     0x3D
#define MPU6050_RA_ACCEL_YOUT_L     0x3E
#define MPU6050_RA_ACCEL_ZOUT_H     0x3F
#define MPU6050_RA_ACCEL_ZOUT_L     0x40
#define MPU6050_RA_TEMP_OUT_H       0x41
#define MPU6050_RA_TEMP_OUT_L       0x42
#define MPU6050_RA_GYRO_XOUT_H      0x43
#define MPU6050_RA_GYRO_XOUT_L      0x44
#define MPU6050_RA_GYRO_YOUT_H      0x45
#define MPU6050_RA_GYRO_YOUT_L      0x46
#define MPU6050_RA_GYRO_ZOUT_H      0x47
#define MPU6050_RA_GYRO_ZOUT_L      0x48
#define MPU6050_RA_EXT_SENS_DATA_00 0x49
#define MPU6050_RA_EXT_SENS_DATA_01 0x4A
#define MPU6050_RA_EXT_SENS_DATA_02 0x4B
#define MPU6050_RA_EXT_SENS_DATA_03 0x4C
#define MPU6050_RA_EXT_SENS_DATA_04 0x4D
#define MPU6050_RA_EXT_SENS_DATA_05 0x4E
#define MPU6050_RA_EXT_SENS_DATA_06 0x4F
#define MPU6050_RA_EXT_SENS_DATA_07 0x50
#define MPU6050_RA_EXT_SENS_DATA_08 0x51
#define MPU6050_RA_EXT_SENS_DATA_09 0x52
#define MPU6050_RA_EXT_SENS_DATA_10 0x53
#define MPU6050_RA_EXT_SENS_DATA_11 0x54
#define MPU6050_RA_EXT_SENS_DATA_12 0x55
#define MPU6050_RA_EXT_SENS_DATA_13 0x56
#define MPU6050_RA_EXT_SENS_DATA_14 0x57
#define MPU6050_RA_EXT_SENS_DATA_15 0x58
#define MPU6050_RA_EXT_SENS_DATA_16 0x59
#define MPU6050_RA_EXT_SENS_DATA_17 0x5A
#define MPU6050_RA_EXT_SENS_DATA_18 0x5B
#define MPU6050_RA_EXT_SENS_DATA_19 0x5C
#define MPU6050_RA_EXT_SENS_DATA_20 0x5D
#define MPU6050_RA_EXT_SENS_DATA_21 0x5E
#define MPU6050_RA_EXT_SENS_DATA_22 0x5F
#define MPU6050_RA_EXT_SENS_DATA_23 0x60
#define MPU6050_RA_MOT_DETECT_STATUS    0x61
#define MPU6050_RA_I2C_SLV0_DO      0x63
#define MPU6050_RA_I2C_SLV1_DO      0x64
#define MPU6050_RA_I2C_SLV2_DO      0x65
#define MPU6050_RA_I2C_SLV3_DO      0x66
#define MPU6050_RA_I2C_MST_DELAY_CTRL   0x67
#define MPU6050_RA_SIGNAL_PATH_RESET    0x68
#define MPU6050_RA_MOT_DETECT_CTRL      0x69
#define MPU6050_RA_USER_CTRL        0x6A
#define MPU6050_RA_PWR_MGMT_1       0x6B
#define MPU6050_RA_PWR_MGMT_2       0x6C
#define MPU6050_RA_BANK_SEL         0x6D
#define MPU6050_RA_MEM_START_ADDR   0x6E
#define MPU6050_RA_MEM_R_W          0x6F
#define MPU6050_RA_DMP_CFG_1        0x70
#define MPU6050_RA_DMP_CFG_2        0x71
#define MPU6050_RA_FIFO_COUNTH      0x72
#define MPU6050_RA_FIFO_COUNTL      0x73
#define MPU6050_RA_FIFO_R_W         0x74
#define MPU6050_RA_WHO_AM_I         0x75

#define MPU6050_TC_PWR_MODE_BIT     7
#define MPU6050_TC_OFFSET_BIT       6
#define MPU6050_TC_OFFSET_LENGTH    6
#define MPU6050_TC_OTP_BNK_VLD_BIT  0

#define MPU6050_VDDIO_LEVEL_VLOGIC  0
#define MPU6050_VDDIO_LEVEL_VDD     1

#define MPU6050_CFG_EXT_SYNC_SET_BIT    5
#define MPU6050_CFG_EXT_SYNC_SET_LENGTH 3
#define MPU6050_CFG_DLPF_CFG_BIT    2
#define MPU6050_CFG_DLPF_CFG_LENGTH 3

#define MPU6050_EXT_SYNC_DISABLED       0x0
#define MPU6050_EXT_SYNC_TEMP_OUT_L     0x1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L    0x2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L    0x3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L    0x4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L   0x5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L   0x6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L   0x7

#define MPU6050_DLPF_BW_256         0x00
#define MPU6050_DLPF_BW_188         0x01
#define MPU6050_DLPF_BW_98          0x02
#define MPU6050_DLPF_BW_42          0x03
#define MPU6050_DLPF_BW_20          0x04
#define MPU6050_DLPF_BW_10          0x05
#define MPU6050_DLPF_BW_5           0x06

#define MPU6050_GCONFIG_FS_SEL_BIT      4
#define MPU6050_GCONFIG_FS_SEL_LENGTH   2

#define MPU6050_GYRO_FS_250         0x00
#define MPU6050_GYRO_FS_500         0x01
#define MPU6050_GYRO_FS_1000        0x02
#define MPU6050_GYRO_FS_2000        0x03

#define MPU6050_ACONFIG_XA_ST_BIT           7
#define MPU6050_ACONFIG_YA_ST_BIT           6
#define MPU6050_ACONFIG_ZA_ST_BIT           5
#define MPU6050_ACONFIG_AFS_SEL_BIT         4
#define MPU6050_ACONFIG_AFS_SEL_LENGTH      2
#define MPU6050_ACONFIG_ACCEL_HPF_BIT       2
#define MPU6050_ACONFIG_ACCEL_HPF_LENGTH    3

#define MPU6050_ACCEL_FS_2          0x00
#define MPU6050_ACCEL_FS_4          0x01
#define MPU6050_ACCEL_FS_8          0x02
#define MPU6050_ACCEL_FS_16         0x03

#define MPU6050_DHPF_RESET          0x00
#define MPU6050_DHPF_5              0x01
#define MPU6050_DHPF_2P5            0x02
#define MPU6050_DHPF_1P25           0x03
#define MPU6050_DHPF_0P63           0x04
#define MPU6050_DHPF_HOLD           0x07

#define MPU6050_TEMP_FIFO_EN_BIT    7
#define MPU6050_XG_FIFO_EN_BIT      6
#define MPU6050_YG_FIFO_EN_BIT      5
#define MPU6050_ZG_FIFO_EN_BIT      4
#define MPU6050_ACCEL_FIFO_EN_BIT   3
#define MPU6050_SLV2_FIFO_EN_BIT    2
#define MPU6050_SLV1_FIFO_EN_BIT    1
#define MPU6050_SLV0_FIFO_EN_BIT    0

#define MPU6050_MULT_MST_EN_BIT     7
#define MPU6050_WAIT_FOR_ES_BIT     6
#define MPU6050_SLV_3_FIFO_EN_BIT   5
#define MPU6050_I2C_MST_P_NSR_BIT   4
#define MPU6050_I2C_MST_CLK_BIT     3
#define MPU6050_I2C_MST_CLK_LENGTH  4

#define MPU6050_CLOCK_DIV_348       0x0
#define MPU6050_CLOCK_DIV_333       0x1
#define MPU6050_CLOCK_DIV_320       0x2
#define MPU6050_CLOCK_DIV_308       0x3
#define MPU6050_CLOCK_DIV_296       0x4
#define MPU6050_CLOCK_DIV_286       0x5
#define MPU6050_CLOCK_DIV_276       0x6
#define MPU6050_CLOCK_DIV_267       0x7
#define MPU6050_CLOCK_DIV_258       0x8
#define MPU6050_CLOCK_DIV_500       0x9
#define MPU6050_CLOCK_DIV_471       0xA
#define MPU6050_CLOCK_DIV_444       0xB
#define MPU6050_CLOCK_DIV_421       0xC
#define MPU6050_CLOCK_DIV_400       0xD
#define MPU6050_CLOCK_DIV_381       0xE
#define MPU6050_CLOCK_DIV_364       0xF

#define MPU6050_I2C_SLV_RW_BIT      7
#define MPU6050_I2C_SLV_ADDR_BIT    6
#define MPU6050_I2C_SLV_ADDR_LENGTH 7
#define MPU6050_I2C_SLV_EN_BIT      7
#define MPU6050_I2C_SLV_BYTE_SW_BIT 6
#define MPU6050_I2C_SLV_REG_DIS_BIT 5
#define MPU6050_I2C_SLV_GRP_BIT     4
#define MPU6050_I2C_SLV_LEN_BIT     3
#define MPU6050_I2C_SLV_LEN_LENGTH  4

#define MPU6050_I2C_SLV4_RW_BIT         7
#define MPU6050_I2C_SLV4_ADDR_BIT       6
#define MPU6050_I2C_SLV4_ADDR_LENGTH    7
#define MPU6050_I2C_SLV4_EN_BIT         7
#define MPU6050_I2C_SLV4_INT_EN_BIT     6
#define MPU6050_I2C_SLV4_REG_DIS_BIT    5
#define MPU6050_I2C_SLV4_MST_DLY_BIT    4
#define MPU6050_I2C_SLV4_MST_DLY_LENGTH 5

#define MPU6050_MST_PASS_THROUGH_BIT    7
#define MPU6050_MST_I2C_SLV4_DONE_BIT   6
#define MPU6050_MST_I2C_LOST_ARB_BIT    5
#define MPU6050_MST_I2C_SLV4_NACK_BIT   4
#define MPU6050_MST_I2C_SLV3_NACK_BIT   3
#define MPU6050_MST_I2C_SLV2_NACK_BIT   2
#define MPU6050_MST_I2C_SLV1_NACK_BIT   1
#define MPU6050_MST_I2C_SLV0_NACK_BIT   0

#define MPU6050_INTCFG_INT_LEVEL_BIT        7
#define MPU6050_INTCFG_INT_OPEN_BIT         6
#define MPU6050_INTCFG_LATCH_INT_EN_BIT     5
#define MPU6050_INTCFG_INT_RD_CLEAR_BIT     4
#define MPU6050_INTCFG_FSYNC_INT_LEVEL_BIT  3
#define MPU6050_INTCFG_FSYNC_INT_EN_BIT     2
#define MPU6050_INTCFG_I2C_BYPASS_EN_BIT    1
#define MPU6050_INTCFG_CLKOUT_EN_BIT        0

#define MPU6050_INTMODE_ACTIVEHIGH  0x00
#define MPU6050_INTMODE_ACTIVELOW   0x01

#define MPU6050_INTDRV_PUSHPULL     0x00
#define MPU6050_INTDRV_OPENDRAIN    0x01

#define MPU6050_INTLATCH_50USPULSE  0x00
#define MPU6050_INTLATCH_WAITCLEAR  0x01

#define MPU6050_INTCLEAR_STATUSREAD 0x00
#define MPU6050_INTCLEAR_ANYREAD    0x01

#define MPU6050_INTERRUPT_FF_BIT            7
#define MPU6050_INTERRUPT_MOT_BIT           6
#define MPU6050_INTERRUPT_ZMOT_BIT          5
#define MPU6050_INTERRUPT_FIFO_OFLOW_BIT    4
#define MPU6050_INTERRUPT_I2C_MST_INT_BIT   3
#define MPU6050_INTERRUPT_PLL_RDY_INT_BIT   2
#define MPU6050_INTERRUPT_DMP_INT_BIT       1
#define MPU6050_INTERRUPT_DATA_RDY_BIT      0

// TODO: Need to work on DMP related things
#define MPU6050_DMPINT_5_BIT            5
#define MPU6050_DMPINT_4_BIT            4
#define MPU6050_DMPINT_3_BIT            3
#define MPU6050_DMPINT_2_BIT            2
#define MPU6050_DMPINT_1_BIT            1
#define MPU6050_DMPINT_0_BIT            0

#define MPU6050_MOTION_MOT_XNEG_BIT     7
#define MPU6050_MOTION_MOT_XPOS_BIT     6
#define MPU6050_MOTION_MOT_YNEG_BIT     5
#define MPU6050_MOTION_MOT_YPOS_BIT     4
#define MPU6050_MOTION_MOT_ZNEG_BIT     3
#define MPU6050_MOTION_MOT_ZPOS_BIT     2
#define MPU6050_MOTION_MOT_ZRMOT_BIT    0

#define MPU6050_DELAYCTRL_DELAY_ES_SHADOW_BIT   7
#define MPU6050_DELAYCTRL_I2C_SLV4_DLY_EN_BIT   4
#define MPU6050_DELAYCTRL_I2C_SLV3_DLY_EN_BIT   3
#define MPU6050_DELAYCTRL_I2C_SLV2_DLY_EN_BIT   2
#define MPU6050_DELAYCTRL_I2C_SLV1_DLY_EN_BIT   1
#define MPU6050_DELAYCTRL_I2C_SLV0_DLY_EN_BIT   0

#define MPU6050_PATHRESET_GYRO_RESET_BIT    2
#define MPU6050_PATHRESET_ACCEL_RESET_BIT   1
#define MPU6050_PATHRESET_TEMP_RESET_BIT    0

#define MPU6050_DETECT_ACCEL_ON_DELAY_BIT       5
#define MPU6050_DETECT_ACCEL_ON_DELAY_LENGTH    2
#define MPU6050_DETECT_FF_COUNT_BIT             3
#define MPU6050_DETECT_FF_COUNT_LENGTH          2
#define MPU6050_DETECT_MOT_COUNT_BIT            1
#define MPU6050_DETECT_MOT_COUNT_LENGTH         2

#define MPU6050_DETECT_DECREMENT_RESET  0x0
#define MPU6050_DETECT_DECREMENT_1      0x1
#define MPU6050_DETECT_DECREMENT_2      0x2
#define MPU6050_DETECT_DECREMENT_4      0x3

#define MPU6050_USERCTRL_DMP_EN_BIT             7
#define MPU6050_USERCTRL_FIFO_EN_BIT            6
#define MPU6050_USERCTRL_I2C_MST_EN_BIT         5
#define MPU6050_USERCTRL_I2C_IF_DIS_BIT         4
#define MPU6050_USERCTRL_DMP_RESET_BIT          3
#define MPU6050_USERCTRL_FIFO_RESET_BIT         2
#define MPU6050_USERCTRL_I2C_MST_RESET_BIT      1
#define MPU6050_USERCTRL_SIG_COND_RESET_BIT     0

#define MPU6050_PWR1_DEVICE_RESET_BIT   7
#define MPU6050_PWR1_SLEEP_BIT          6
#define MPU6050_PWR1_CYCLE_BIT          5
#define MPU6050_PWR1_TEMP_DIS_BIT       3
#define MPU6050_PWR1_CLKSEL_BIT         2
#define MPU6050_PWR1_CLKSEL_LENGTH      3

#define MPU6050_CLOCK_INTERNAL          0x00
#define MPU6050_CLOCK_PLL_XGYRO         0x01
#define MPU6050_CLOCK_PLL_YGYRO         0x02
#define MPU6050_CLOCK_PLL_ZGYRO         0x03
#define MPU6050_CLOCK_PLL_EXT32K        0x04
#define MPU6050_CLOCK_PLL_EXT19M        0x05
#define MPU6050_CLOCK_KEEP_RESET        0x07

#define MPU6050_PWR2_LP_WAKE_CTRL_BIT       7
#define MPU6050_PWR2_LP_WAKE_CTRL_LENGTH    2
#define MPU6050_PWR2_STBY_XA_BIT            5
#define MPU6050_PWR2_STBY_YA_BIT            4
#define MPU6050_PWR2_STBY_ZA_BIT            3
#define MPU6050_PWR2_STBY_XG_BIT            2
#define MPU6050_PWR2_STBY_YG_BIT            1
#define MPU6050_PWR2_STBY_ZG_BIT            0

#define MPU6050_WAKE_FREQ_1P25      0x0
#define MPU6050_WAKE_FREQ_2P5       0x1
#define MPU6050_WAKE_FREQ_5         0x2
#define MPU6050_WAKE_FREQ_10        0x3

#define MPU6050_BANKSEL_PRFTCH_EN_BIT       6
#define MPU6050_BANKSEL_CFG_USER_BANK_BIT   5
#define MPU6050_BANKSEL_MEM_SEL_BIT         4
#define MPU6050_BANKSEL_MEM_SEL_LENGTH      5

#define MPU6050_WHO_AM_I_BIT        6
#define MPU6050_WHO_AM_I_LENGTH     6

#define MPU6050_DMP_MEMORY_BANKS        8
#define MPU6050_DMP_MEMORY_BANK_SIZE    256
#define MPU6050_DMP_MEMORY_CHUNK_SIZE   16

#define uint8_t unsigned char   
#define int16_t int             
#define uint32_t unsigned long  


void MPU6050_Read(unsigned char SlaveAddress,unsigned char REG_Address,unsigned char readNum);

void MPU6050_WriteBits(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data);
void MPU6050_WriteBit(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data);
void MPU6050_ReadBits(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t *data);

void MPU6050_Initialize(void);              
uint8_t MPU6050_GetDeviceID(void);       

void MPU6050_GetRawAccelGyro(int16_t* ax, int16_t* ay, int16_t* az, \
    int16_t* temperature, int16_t* gx, int16_t* gy, int16_t* gz);


unsigned char MPU6050_Read_1BYTE(unsigned char SlaveAddress,unsigned char REG_Address);
typedef signed   char   int8;
typedef unsigned char   uint8;


//***********************************************************************************
// Function prototypes
void accInit(void);
void accStop(void);
void accWriteReg(uint8 reg, uint8 val);
void accReadReg(uint8 reg, uint8 *pVal);
void accReadAcc(int8 *pXVal, int8 *pYVal, int8 *pZVal);
void accReadAccGro(int8 *pXAcc, int8 *pYAcc, int8 *pZAcc, int8 *pXGro, int8 *pYGro, int8 *pZGro);




#endif

mpu6050.c
#include <ioCC2540.h>
#include "IIC.h"
#include "MPU6050.h"

#define I2C_PORT_NUM        1
#define BUFSIZE             14  


volatile uint8_t I2CMasterBuffer[I2C_PORT_NUM][BUFSIZE];
volatile uint8_t I2CSlaveBuffer[I2C_PORT_NUM][BUFSIZE];
volatile uint32_t I2CReadLength[I2C_PORT_NUM];
volatile uint32_t I2CWriteLength[I2C_PORT_NUM];

void DelayI2C(uint32_t m)
{
  uint32_t i;
  
  for(; m != 0; m--)    
       for (i=0; i<5; i++);
}

void MPU6050_Read(unsigned char SlaveAddress,unsigned char REG_Address,unsigned char readNum)
{
    unsigned char i; 
    for(i = 0; i<readNum; i++)
    {        
        I2CSlaveBuffer[PORT_USED][i] = Read_Add(REG_Address + i, SlaveAddress);
    }
}

unsigned char MPU6050_Read_1BYTE(unsigned char SlaveAddress,unsigned char REG_Address)
{
    return Read_Add(REG_Address, SlaveAddress);
}


void MPU6050_Write(unsigned char SlaveAddress,unsigned char REG_Address,unsigned char REG_data) 
{
    Write_Add(REG_Address, REG_data, SlaveAddress);
}

void MPU6050_WriteBits(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t data) 
{
    //      010 value to write
    // 76543210 bit numbers
    //    xxx   args: bitStart=4, length=3
    // 00011100 mask byte
    // 10101111 original value (sample)
    // 10100011 original & ~mask
    // 10101011 masked | value
    uint8_t tmp;
    uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1);
    MPU6050_Read(slaveAddr, regAddr, 1);
    tmp = I2CSlaveBuffer[PORT_USED][0];  
//    uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1);
    data <<= (bitStart - length + 1); // shift data into correct position
    data &= mask;   // zero all non-important bits in data
    tmp &= ~(mask); // zero all important bits in existing byte
    tmp |= data;    // combine data with existing byte
    MPU6050_Write(slaveAddr,regAddr,tmp);   
}

void MPU6050_WriteBit(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data) 
{
    uint8_t tmp;
    MPU6050_Read(slaveAddr, regAddr, 1);
    tmp = I2CSlaveBuffer[PORT_USED][0];  
    tmp = (data != 0) ? (tmp | (1 << bitNum)) : (tmp & ~(1 << bitNum));
    MPU6050_Write(slaveAddr,regAddr,tmp); 
}

void MPU6050_ReadBits(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitStart, uint8_t length, uint8_t *data) 
{
    // 01101001 read byte
    // 76543210 bit numbers
    //    xxx   args: bitStart=4, length=3
    //    010   masked
    //   -> 010 shifted

#if 1 
    uint8_t tmp;
    uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1);
    MPU6050_Read(slaveAddr, regAddr, 1);
    tmp = I2CSlaveBuffer[PORT_USED][0]; 
//    uint8_t mask = ((1 << length) - 1) << (bitStart - length + 1);
    tmp &= mask;
    tmp >>= (bitStart - length + 1);
    *data = tmp;
#else
    uint8_t tmp;
    MPU6050_Read(slaveAddr, regAddr, 1);
    tmp = I2CSlaveBuffer[PORT_USED][0]; 
    *data = tmp;
#endif
}

void MPU6050_Initialize(void)
{
    MPU6050_WriteBits(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, 
        MPU6050_PWR1_CLKSEL_BIT, MPU6050_PWR1_CLKSEL_LENGTH, MPU6050_CLOCK_PLL_XGYRO);
    MPU6050_WriteBits(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_GYRO_CONFIG,
        MPU6050_GCONFIG_FS_SEL_BIT, MPU6050_GCONFIG_FS_SEL_LENGTH, MPU6050_GYRO_FS_250);
    MPU6050_WriteBits(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_CONFIG, 
        MPU6050_ACONFIG_AFS_SEL_BIT, MPU6050_ACONFIG_AFS_SEL_LENGTH, MPU6050_ACCEL_FS_2);
    MPU6050_WriteBit(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_PWR_MGMT_1, MPU6050_PWR1_SLEEP_BIT, 0);//(DISABLE); 
}

uint8_t MPU6050_GetDeviceID()
{
    uint8_t tmp;

    MPU6050_ReadBits(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_WHO_AM_I, \
        MPU6050_WHO_AM_I_BIT, MPU6050_WHO_AM_I_LENGTH, &tmp);
    
    return tmp<<(MPU6050_WHO_AM_I_BIT-MPU6050_WHO_AM_I_LENGTH+1);  // 注意这里的移位  amomcu
}


void MPU6050_GetRawAccelGyro(int16_t* ax, int16_t* ay, int16_t* az, int16_t* temperature, int16_t* gx, int16_t* gy, int16_t* gz) 
{
//    u8 tmpBuffer[14]; 
    //int i;
    MPU6050_Read(MPU6050_DEFAULT_ADDRESS, MPU6050_RA_ACCEL_XOUT_H, 14); 

    /* Get acceleration */
 //   for(i=0; i<3; i++) 
//      AccelGyro[i]=((int16_t)((uint16_t)I2CSlaveBuffer[PORT_USED][2*i] << 8) + I2CSlaveBuffer[PORT_USED][2*i+1]);
   /* Get Angular rate */
//    for(i=4; i<7; i++)
//      AccelGyro[i-1]=((int16_t)((uint16_t)I2CSlaveBuffer[PORT_USED][2*i] << 8) + I2CSlaveBuffer[PORT_USED][2*i+1]); 
    *ax = (((int16_t)I2CSlaveBuffer[PORT_USED][0]) << 8) | ((int16_t)I2CSlaveBuffer[PORT_USED][1]); 
    *ay = (((int16_t)I2CSlaveBuffer[PORT_USED][2]) << 8) | ((int16_t)I2CSlaveBuffer[PORT_USED][3]); 
    *az = (((int16_t)I2CSlaveBuffer[PORT_USED][4]) << 8) | ((int16_t)I2CSlaveBuffer[PORT_USED][5]); 

    // 温度
    *temperature = (((int16_t)I2CSlaveBuffer[PORT_USED][6]) << 8) | ((int16_t)I2CSlaveBuffer[PORT_USED][7]); 
    
    *gx = (((int16_t)I2CSlaveBuffer[PORT_USED][8]) << 8) | ((int16_t)I2CSlaveBuffer[PORT_USED][9]); 
    *gy = (((int16_t)I2CSlaveBuffer[PORT_USED][10]) << 8) | ((int16_t)I2CSlaveBuffer[PORT_USED][11]); 
    *gz = (((int16_t)I2CSlaveBuffer[PORT_USED][12]) << 8) | ((int16_t)I2CSlaveBuffer[PORT_USED][13]); 
}


#if 1
uint8_t bIfConnected = 0;
void accInit(void)
{
    unsigned char tempV = 0;
    IIC_Init();                     

    tempV = MPU6050_GetDeviceID();
    if(tempV == MPU6050_ADDRESS_AD0_LOW)          
    {           
        bIfConnected = 1;
    }
    else
    {
        bIfConnected = 0;
    }
    
    if(bIfConnected)
    {        
        MPU6050_Initialize();        
    }
}
void accStop(void)
{

}
void accWriteReg(uint8 reg, uint8 val)
{
    if(bIfConnected)
    {
        MPU6050_Write(0x68<<1, reg, val);
    }
}
void accReadReg(uint8 reg, uint8 *pVal)
{
    if(bIfConnected)
    {
        *pVal = MPU6050_Read_1BYTE(0x68<<1, reg);
    }
}
void accReadAcc(int8 *pXVal, int8 *pYVal, int8 *pZVal)
{
    int16_t ax, ay, az;
    int16_t gx, gy, gz;    
    int16_t temperature;
    if(bIfConnected)
    {         
        MPU6050_GetRawAccelGyro(&ax, &ay, &az, &temperature, &gx, &gy, &gz);

        *pXVal = ax/100;
        *pYVal = ay/100;
        *pZVal = az/100;
    }
}

void accReadAccGro(int8 *pXAcc, int8 *pYAcc, int8 *pZAcc, int8 *pXGro, int8 *pYGro, int8 *pZGro)
{
    int16_t ax, ay, az;
    int16_t gx, gy, gz;    
    int16_t temperature;
    if(bIfConnected)
    {               
        MPU6050_GetRawAccelGyro(&ax, &ay, &az, &temperature, &gx, &gy, &gz);

        *pXAcc = ax/100;
        *pYAcc = ay/100;
        *pZAcc = az/100;

        *pXGro = gx/100;
        *pYGro = gy/100;
        *pZGro = gz/100;        
    }
}

#endif

STEP 2  Add test code in simpleBLEPeripheral.c

about line 90
#include "mpu6050.h"


about line 241
void simpleBLE_Delay_1ms(int times);
void mpu6050_gpio_iic_Test();


about line 479  in SimpleBLEPeripheral_ProcessEvent( uint8 task_id, uint16 events )
uint16 SimpleBLEPeripheral_ProcessEvent( uint8 task_id, uint16 events )
{

  VOID task_id; // OSAL required parameter that isn't used in this function

  if ( events & SYS_EVENT_MSG )
  {
    uint8 *pMsg;

    if ( (pMsg = osal_msg_receive( simpleBLEPeripheral_TaskID )) != NULL )
    {
      simpleBLEPeripheral_ProcessOSALMsg( (osal_event_hdr_t *)pMsg );

      // Release the OSAL message
      VOID osal_msg_deallocate( pMsg );
    }

    // return unprocessed events
    return (events ^ SYS_EVENT_MSG);
  }

  if ( events & SBP_START_DEVICE_EVT )
  {
    // Start the Device
    VOID GAPRole_StartDevice( &simpleBLEPeripheral_PeripheralCBs );

    // Start Bond Manager
    VOID GAPBondMgr_Register( &simpleBLEPeripheral_BondMgrCBs );
    
    /*agatha:just for test mpu6050 iic 6/16*/
    mpu6050_gpio_iic_Test();
    
    return ( events ^ SBP_START_DEVICE_EVT );
  }  
  
  if ( events & SBP_PERIODIC_EVT )
  {
    // Restart timer
    if ( SBP_PERIODIC_EVT_PERIOD )
    {
      osal_start_timerEx( simpleBLEPeripheral_TaskID, SBP_PERIODIC_EVT, SBP_PERIODIC_EVT_PERIOD );
    }
    // Perform periodic application task       
    performPeriodicTask();
    
    return (events ^ SBP_PERIODIC_EVT);
  }

#if defined ( PLUS_BROADCASTER )
  if ( events & SBP_ADV_IN_CONNECTION_EVT )
  {
    uint8 turnOnAdv = TRUE;
    // Turn on advertising while in a connection
    GAPRole_SetParameter( GAPROLE_ADVERT_ENABLED, sizeof( uint8 ), &turnOnAdv );

    return (events ^ SBP_ADV_IN_CONNECTION_EVT);
  }
#endif // PLUS_BROADCASTER

  // Discard unknown events
  return 0;
}

about line 873
void simpleBLE_Delay_1ms(int times)
{
  while(times--)
  {
      int i=0;
      for(i=1500;i>0;i--)
      {
       asm("nop");
      }
  }
}



about line 887
void mpu6050_gpio_iic_Test()
{
    while(1)
    {
        uint16 numBytes;
        char pktBuffer[128];
        int8 XAcc, YAcc, ZAcc;
        int8 XGro, YGro, ZGro;

        accInit();  
        
        accReadAccGro(&XAcc, &YAcc, &ZAcc, &XGro, &YGro, &ZGro);
        sprintf((char *)pktBuffer, "%d,%d,%d,%d,%d,%d\r\n", XAcc, YAcc, ZAcc, XGro, YGro, ZGro);
        
        UartSendString(strTemp, strlen(strTemp));
        
        simpleBLE_Delay_1ms(200);        
  }



Then press "rebuild all" --> "download and debug " --> "Go" on IAR

the result will be like :



















Notes:

1. noticed insufficiency
my software implement I2C is not comprehensive. I didn't implement some functions like
I2C as External interrupt to wake up SoC ...etc.

2. software implement still need some API of CC2540, and that is why I include <iocc2540.h>.

However, software GPIO pins simulate I2C can be used on any chips basically, so actually you can replace those API to those of your platform in order to make the sw_iic.c/h to be cross-platform.